
 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)
 www.ijset.com, Volume No.1, Issue No.2 pg:14-16 01 April 012

 14

REVERSE ENGINEERING APPROACH TO

INSTATEMENT OF DESIGN ARTIFACTS
Ms.Parul Dongre *, Mr.Arvind Upadhyay *, Mrs Namrata tapsavi *

* Department of Computer science, IES IPS Academy Indore

parul.dongre@gmail.com

upadhyayarvind10@gmail.com

namrat_tapsavi09@gmail.com
ABSTRACT

Software engineering concerned with improving the

productivity of the software development process and the

quality of the systems it produces. However, in current

scenario, the most of the development effort is spent on

maintaining existing systems rather than developing new

ones. This paper describes wide research program which is

present in the area of reverse engineering, tools developed

for reversing and also discuss the concepts of new tool

generation.

Fjeldstad and Hamlen report says that 47% to 62% of time

spent on actual enhancement and correction tasks

respectively, and devoted to comprehension activities.

These involve reading the documentation, scanning the

source code, and understanding the changes to be made.

The implications are that if we want to improve software

development .we should look at maintenance, and if we

want to improve maintenance, we should facilitate the

process of comprehending existing programs. Reverse

engineering provides a direct attack on the program

comprehension problem.

Here, we are discussing and study the various tools evolve

in the field of reverse engineering and discussing of concept

to create a new tool.

Keyword: Forward engineering, legacy code,

Reengineering, Reusability, Software maintenance.

I. Reverse engineering- a brief overview

Reverse engineering is a process where an engineered

artifact (such as a car, a jet engine, or a software

program) is deconstructed in a way that reveals its

innermost details, such as its design and architecture.

This is similar to scientific research that studies natural

phenomena, with the difference that no one commonly

refers to scientific research as reverse engineering,

simply because no one knows for sure whether or not

nature was ever engineered.

In the software world reverse engineering boils down to

taking an existing program for which source-code or

proper documentation is not available and attempting

to recover details regarding its design and

implementation. In some cases source code is available

but the original developers who created it are

unavailable. Therefore we can say that Reverse

engineering is usually conducted to obtain missing

knowledge, ideas, and design philosophy when

information is unavailable. In some cases, the

information is owned by someone who isn’t willing to

share them. In other cases, the information has been lost

or destroyed.

Software reverse engineering requires a combination of

skills and a thorough understanding of computers and

software development, but like most worthwhile

subjects, the only real prerequisite is a strong curiosity

and desire to learn. Software reverse engineering

integrates several arts: code breaking, puzzle solving,

programming, and logical analysis.

The process is used by a variety of different people for a

variety of different purposes.

Chikofskys and Cross [8] give the following definition.

“Reverse engineering is the process of analyzing a

subject system to identify the system’s components and

their interrelationships and create representations of the

system in another form or at a higher level of

abstraction." The purpose of reverse engineering is to

understand a software system in order to facilitate

enhancement, correction, documentation, redesign, or

reprogramming in a different programming language.

Figure 1 contains a graphical depiction of a process

model for reverse engineering and reengineering [1]. The

process model is captured by two sectioned, where each

section represents a different level of abstraction. The

higher levels in the model are concepts and

requirements. The lower levels include designs and

implementations. Entry into this reengineering process

model begins with system, where Abstraction (or reverse

engineering) is performed to a level of detail appropriate

to the task being performed. For instance, if a system is

to be reengineered in response to efficiency constraints,

then abstraction to the design level may be appropriate.

The next step is Alteration, where the system is

configured into a new form at a different level of

http://www.ijset.com/
mailto:parul.dongre@gmail.com
mailto:upadhyayarvind10@gmail.com
mailto:namrat_tapsavi09@gmail.com

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)
 www.ijset.com, Volume No.1, Issue No.2 pg:14-16 01 April 012

 15

abstraction. Finally, Refinement of the new form into an

implementation can be performed to create system.

 Concept

Several terms are frequently used in the discussion of

software reengineering [ChiBO]. Software reengineering

is the alternation of a system to reconstitute it in a new

form, which potentially involves changes at the

requirements, design, and coding phases. The activity

generally includes reverse engineering followed by

forward engineering or restructuring. Reverse

engineering is the process of analyzing a system to

extract design artifacts or abstractions that are less

implementation-dependent.

Forward engineering is the traditional software

development process of moving from requirements,

design and coding. Restructuring is the transformation

from one representation to another at the same

abstraction.

II. Reversing tools

Reversing is impossible without the right tools. There

are hundreds of different software tools available out

there that can be used for reversing. Understanding the

differences between these tools and choosing the right

ones is critical.

 C++Code Crawler, is there which is used by many

major platforms. The important thing is that this is free,

language independent reverse engineering tool which

combine metrics with software. Visualization Source

Publisher is also there which works on windows and

UNIX also produces PDF and HTML documentation

from C/C++ and Ada source code. It Colorizes code,

adds structure bars for easy sorting out of nested control

structures.

There is jGRASP but restricted to java Produces Control

Structure Diagrams for Java, C, C++, Complexity Profile

Graph diagrams for Java and Ada, UML diagrams for

Java and has an integrated debugger and workbench for

Java. RoboHelp is also there for windows generates

documentation from source code (C, C++, Visual Basic,

Java, JavaScript, Delphi), Word documents, etc. to

WebHelp, HTML Help, HTML, JavaHelp, WinHelp.

WinA&D, MacA&D/Translator is there on Mac, HP and

Sun UNIX, Windows platform for reverse engineering.

Rational Rose is there on to work for SPARC, RS/6000,

Windows, OS/2 to use for reverse engineering C/C++,

Ada code. Other than this SoDa, Imagix 4D, CDOC-

suite used respectively for automatically creates

documents from Rational Rose OO models, C/C++

reverse engineering, C/C++ reverse engineering: control-

logic, caller/called hierarchy.

III. Analysis for tool development

We will actually design a parser that will implement the

concept of reverse engineering and accordingly reversely

engineer the input java code & generate the respective

design artifacts like class, sequence, activity and use case

diagram. In order to implement the concept of reverse

engineering we firstly allow the user to import the

desired input java code into the interface (Input Screen

where he can import the java code from the stored path)

and then step by step generate the class diagram first

after that we proceed towards the sequence, activity and

use case diagram.

 Here we define the source path of the input java code

file. After defining the source path of the java code and

importing it the actual process starts.

Class Diagram Generator: The first solution came in

the form of “Class Diagram”. Here there is another

interface by which the user can define the setting

parameters for the class diagram.

Sequence Diagram Generator: After successfully

generating the class diagram the next will be to generate

the desired sequence diagram. Here we used parsing

technique to generate the sequence diagram.

Activity Diagram Generator: The next step is for the

generation of activity diagram. For this we need to

extract the loops and operators used in various functions

of the classes. Then we can find the various activities.

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)
 www.ijset.com, Volume No.1, Issue No.2 pg:14-16 01 April 012

 16

Use Case Diagram Generator: After activity diagram,

the next step is to generate the use case diagram of the

java code. This is a very crucial step. Use Case diagram

successfully depicts all the functionalities as well as the

interaction between various actors.

IV. System architecture

Our parser is Java based software to recover the high

level UML design patterns (design artifacts) from java

source file only. Through these design models the code

analysis becomes easier. Our complete application is

implemented in three phases.

A. Source code analysis

B. Tokenizing source codes

C. Generation of design artifacts

A. Source Code Analysis: In this phase we get the

user input in the form of the java source code file and

after that we start analysis of this input source code. By

reading the source code file and prepare list of all files

related to the particular source code file we the found

dependencies, functions, various child classes, member

variables and their return types.

B. Tokenizing Source Codes: In this phase we get the

input from the system (the output of the pervious phase).

We get a list of all members and list of relationships

between them. Here we are creating a list of nodes and

edges that will describe the actual dependency between

the members.

C. Generation of Design Artifacts: The result of the

second phase acts as an input in this phase to generate

design artifacts. For that we use the graphics to map the

members name, operations and the attributes as node.

Conclusion

Large software system requires more maintenance effort

then smaller system. Large system is more complex in

terms of variety of function they perform, so it requires

great program understanding capabilities. For program

understanding we can use various kinds of tools which

support reverse engineering to recover lost information,

for improve documentation, to provide alternate view, to

extract reusable components and to detect side effects.

Here we discuss a new tool for java source code which at

higher-level of abstraction visualise the complete

software by making class diagram, sequence, activity

and use case diagram.

References

1. Chia-chu chiang and Roger Y. Lee, Developing tool for

reverse engineering in a software product line architecture,

IEEE conference 2004.

2. Leon moonen and Tarja systa, International workshop on

reverse engineering models from software artifacts, 16th

working conference on reverse engineering, 2009.

3. G. C. Gannod, Y. Chen, and B. Cheng. An automated

approach for supporting software reuse via reverse

engineering. Technical Report MSUCPS: TR98-16,

Michigan State University, Department of Computer

Science and Engineering, May 1998.

4. Barry W. Boehm, Software Engineering Economics,

Prentice Hall, 1981.

5. R. K. Fjeldstad and W. T. Hamlen., ‘‘Application Program

Maintenance Study: Tutorial on Software Maintenance,

G. Parikh and N. Zvegintozov, editors, IEEE Computer

Society, April 1983, IEEE Order1 No. EM453.

6. E. J. Chikofsky and J. H. Cross. Reverse Engineering and

Design Recovery: Taxonomy. IEEE Software 7(1):13– 17,

January 1990.

7. Reversing: The secret of reverse engineering, Eldad

EilamCopyright 2005 by Wiley Publishing, Inc.,

Indianapolis, Indiana ISBN-10: 0-7645-7481-7 ,ISBN-13:

978-0-7645-7481-8.

8. Toward the Reverse Engineering of UML Sequence

Diagrams for Distributed Java Software, Lionel C. Briand,

Senior Member, IEEE, Yvan Labiche, Member, IEEE, and

Johannes Ledu ,IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

http://www.ijset.com/

