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Abstract—The phenomenon of chaotic system synchronization is 

very interesting because of its high potential of applications. In 

this paper results from various synchronization schemes in the 

form of a survey articles with a tutorial emphasis has been 

presented. Chaotic dynamical systems having features such as 

sensitive dependence on initial conditions and topological mixing 

along with periodic dense orbits. In order to optimize the results 

of synchronization is also a motivating factor for the study of this 

phenomenon. 
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I. INTRODUCTION 

       In 17th century the famous Dutch physicist Christian 

Huygens reported the first observation of synchronization of 

two pendulum clocks in 1665 [1]. The experimental as well as 

theoretical study of this phenomenon was started by Edward 

Appleton (1922) and Balthasar van der Pol (1927).They 

showed that by a weak external signal with slightly different 

frequency, the frequency of a triode generator can be 

entrained, or synchronized. Andronov and Vitt (1930), 

representatives of the Russian school, provided the 

development of synchronization theory. Mandelshtam and 

Papaleksi (1947), studied about the n : m external 

synchronization. Mutual synchronization of two weakly 

nonlinear oscillators was analytically treated by Mayer (1935) 

and Gaponov (1936) after that relaxation oscillators were 

studied by Bremsen and Feinberg (1941). Finally in the 

monographs of Teodorchik (1952), Hayashi (1964), Malakhov 

(1968), Blekhman (1971, 1981), Landa (1980, 1996), 

Romanovsky et al. (1984) and Kuramoto (1984) we can get 

the review of the chaotic synchronization.  

       Finally in 1990, researchers realized that chaotic systems 

can be synchronized. The chaos synchronization has been seen 

as a topic of independent research with the research of Pecora 

and Carroll [17, 18, 19], along with the Ott, Grebogy and 

Yorke [20]. In the research of Pecora and Carroll [17-19], 

where a synchronization method was established by coupling 

two identical chaotic dynamical systems through transmission 

of a driver as a subsystem which will act as a chaotic signal 

which is common between them. And researchers have 

realized that chaotic systems can be synchronized. 

A. Preliminaries 

        Synchronization of chaos is a phenomenon that may 

occur when two or more, chaotic oscillators are coupled, or 

when a chaotic oscillator drives another chaotic oscillator. 

Because of the butterfly effect, which causes the exponential 

divergence of the trajectories of two identical chaotic system 

started with nearly the same initial conditions, having two 

chaotic systems evolving in synchrony might appear quite 

surprising. Sensitivity to initial conditions is popularly known 

as the "butterfly effect", so called because of the title of a 

paper given by Edward Lorenz in 1972 to the American 

Association for the Advancement of Science in Washington, 

D.C. entitled Predictability: Does the Flap of a Butterfly’s 

Wings in Brazil set off a Tornado in Texas? The flapping wing 

represents a small change in the initial condition of the system, 

which causes a chain of events leading to large-scale 

phenomena. Had the butterfly not flapped its wings, the 

trajectory of the system might have been vastly different. 

                 

B. Chaotic Behavior 

     The study of dynamical systems was based, for a long time, 

on examples of differential equations with regular solutions. If 

these solutions remained in a bounded region of the phase 

space, then they correspond to one of two types of behavior: a 

stable equilibrium point or a periodic (or quasi-periodic) 

oscillation. In 1961, working in a simplified model of 

atmospheric transfer with three nonlinear differential 

equations, he observed numerically that making very small 

changes in the initial conditions he got a huge effect on their 

solutions. It was the evidence of one of the main properties of 

chaotic dynamics which was later known as sensitive 

dependence on initial conditions. This property had already 

been investigated from the topological point of view by 

Poincare who described it in his monograph “Science and 

Method” (1903).  

          In the ancient mythology and philosophy, the word 

chaos meant the disordered state of unformed matter supposed 

to have existed before the ordered universe. The combination  

“Control of chaos” assumes a paradoxical sense arousing 

additional interest in the subject. Many deterministic nonlinear 

systems exhibit, more complex invariant sets which act as 
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attractors for their dynamics inspite of fixed-point solutions 

and limit cycles. The experiment that boosted the 

consideration of chaotic behavior was due to Lorenz [3]. T. Li 

and J. A. Yorke were the first authors who in 1975 introduced 

in their paper “Period Three Implies Chaos” [2] the term 

“chaos” or more precisely, “deterministic chaos” which is 

used widely. In this paper Li and Yorke presented the study of 

possible periods of periodic points which was defined for 

continuous real maps in an interval of real numbers. A 

continuous map which is given by :f I R and it would be 

chaotic when 

 

a) f has periodic points of period , ,n n N   

b) There is an uncountable set    J I such that, 
 

   lim 0 n n
n sup f x f y and    

 

( ) | ( ) ( ) | 0 ,n n
nlim inf f x f y x y J      

 

c) If *x a periodic point of f is valid and for all 

           *, lim 0n n

n
x J sup f x f x


    

 

        It was concluded from condition (a) and (b) that any two 

orbits can successively move away and approach over time 

in J orbits,and at any point of J the periodic points are not 

asymptotic respectively. A map f which has 3-periodic orbit 

is chaotic considered as a Schakowsky’s result in a paper 

written in Russian [4] in 1964.This continuous maps is based 

on a certain natural numbers which were ordered and 

designated by Schakowsky’s sequence. 

Here is the Schakowsky’s ordering- 

 
23 5 7 9   2.3 2.5 2.7   2 .3                    

2 2 3 3 32 .5 2 .7   2 .3 2 .5 2 .7         
4 4 4 3 22 .3 2 .5 2 .7   2 2 2 1                                  (1) 

 

Theorem 1. Assume that f is a continuous map on an interval 

and has a period p orbit. If p q then f has a period q orbit. 

 

         Because of no single formal definition of the 

deterministic chaos, the behavior of chaotic systems can be 

defined as an observable pattern that appears unpredictable 

and irregular in large time scales. 

         In common usage, "chaos" means "a state of disorder" 

[5]. However, in chaos theory, the term is defined more 

precisely. Although there is no universally accepted 

mathematical definition of chaos, a commonly used definition 

says that, for an invariant subset E X of a dynamical 

system ( , , )tS X T   to be classified  as chaotic, it must have 

the following properties [6]: that 
 t must be sensitive to initial 

conditions,
 t must have topologically mixing in E and 

periodic orbits of 
 t  must be dense in E. Sensitivity to initial 

conditions means that each point in such a system is arbitrarily 

closely approximated by other points with significantly 

different future trajectories. Thus, an arbitrarily small 

perturbation of the current trajectory may lead to significantly 

different future behavior. 

         However, it has been shown that the last two properties 

in the list above actually imply sensitivity to initial conditions 

[7,8] and if attention is restricted to intervals, the second 

property implies the other two [9] (an alternative, and in 

general weaker, definition of chaos uses only the first two 

properties in the above list [10]. It is interesting that the most 

practically significant condition, that of sensitivity to initial 

conditions, is actually redundant in the definition, being 

implied by two (or for intervals, one) purely topological 

conditions, which are therefore of greater interest to 

mathematicians. 

          In the phase space the presence of a chaotic attractor 

which has an infinite dense set of unstable periodic orbits 

insures that it is impossible to determine the position of the 

system in the attractor over time, even we know its position on 

that attractor at earlier time. As we know that in detail for 

hyperbolic dynamical systems, the relationship between the 

trajectories of the chaotic attractor and the unstable periodic 

orbits, for which the separation into stable and unstable 

invariant subspaces is consistent under the dynamics evolution 

[11].The fundamental role play in the un-stabilization 

mechanism of that attractor by infinite set of unstable periodic 

orbits which is in a chaotic attractor located in some 

symmetrical invariant manifold, since it is responsible by the 

dynamics of phenomenon such as riddling attraction of basin 

and bubbling of chaotic attractor [12,13]. 

        The remainder of this paper is organized as follows. In 

the Section II, chaos synchronization and synchronization via. 

Coupling has been described. Synchronization of such a 

complex dynamical network and some coupling mechanism 

has been presented in Section III. Finally, some concluding 

remarks are provided in Section IV.  
 

II. CHAOS SYNCHRONIZATION 

Synchronization of chaos is a phenomenon that may 

occur when two, or more, chaotic oscillators are coupled, or 

when a chaotic oscillator drives another chaotic oscillator. 

Because of the butterfly effect, which causes the exponential 

divergence of the trajectories of two identical chaotic system 

started with nearly the same initial conditions, having two 

chaotic systems evolving in synchrony might appear quite 

surprising. However, synchronization of coupled or driven 

chaotic oscillators is a phenomenon well established 

experimentally and reasonably well understood theoretically. 

The dynamics of a system would be chaotic in behavior when 

it never repeats itself and even if initial conditions are 

correlated by proximity, the corresponding trajectories become 

uncorrelated. As such, the possibility of two (or more) chaotic 

systems oscillates in a synchronized way is not an obvious 
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phenomenon, since it is not possible to reproduce exactly the 

same initial conditions. 

As we know that it is impossible to reproduce exactly the 

same initial conditions and parameters, then by the effect of a 

sufficiently strong coupling we can change and counter 

balance the track of the trajectories to diverge due to chaotic 

dynamics. As a result, there is a possible way to reach full 

synchronization in chaotic systems whereas they are coupled 

by a suitable dissipative coupling. In order to "force" chaotic 

systems follow the same trajectory in the chaotic attractor, by 

applying small disturbances between the systems we can 

couple the synchronizing chaotic systems. Still Under the 

influence of external noise, two synchronized may lose the 

stability of synchronization. After a finite transient time, these 

trajectories will be coming again and can synchronize again 

due to ergodic property of chaotic trajectories. 

 

A. Chaotic System Coupling 

Although there are no various ways to couple chaotic 

systems, the coupling must have certain relevant properties. It 

is intended that the coupling (i) is dissipative, means, that 

tends to make the state vectors of the chaotic systems coming 

together, and (ii) it does not affect the chaotic state which has 

been synchronized. There is a possibility to consider two 

coupling mechanisms: unidirectional (one-way or directional) 

and bidirectional (mutual or global) coupling. In unidirectional 

coupling, only the dynamics of the response or slave system is 

affected by the dynamics of the drive or master system. The 

bidirectional coupling incorporates the mutual interaction 

between the systems. 

The effectiveness of a coupling between these systems of 

equal dimension is given, by the analysis of the difference 

between the coordinate points of the respective variables of 

the systems or synchronization error. When the 

synchronization error converges to zero over time the coupling 

between chaotic systems leads to its asymptotic 

synchronization in optimal case. Two dynamical systems 

 1 , , tS X T  and  2 , , tS X T  and will be in asymptotic 

synchronization if t   and 

  lim ( ) 0   t t

t
x x


                                                        (2) 

 

for a limited coupling strength between them.  

        And two dynamical systems  1 , , tS X T  and 

 2 , , tS X T  and will be in practical synchronization if 

t   and 

              

 lim ( )t t

t
x x K


                                                    (3) 

 

for a positive constant 1K  . 

          Whenever there is no possibility to achieve practical 

synchronization, but the difference between the dynamical 

variables of the systems is bounded, we can still apply the 

technique of chaos control. Note that, the dynamics of the 

chaotic systems introduces new freedom degrees in sets of 

coupled systems. However, in general freedom degrees for the 

coupled system actually decrease, when two (or more) chaotic 

oscillators are synchronized via coupling. 

         Hence, the effectiveness of a coupling between these 

systems of equal dimension is given, by the analysis of the 

difference between the coordinate points of the respective 

variables of the systems or synchronization error. 

 

III. COUPLING MECHANISM 

A. Identical Synchronization 

         Chaos synchronization began with the studies of Kaneko  

[15] And Afraimovich [16], about coupling of discrete and 

continuous identical systems having different initial 

conditions. The identical synchronization may occur 

straightforward when one of them drives the other or two 

identical chaotic oscillators are mutually coupled. If 

1 2 3( , , , .., )nx x x x and  ' ' ' '
1 2 3, , , nx x x x denotes the set of 

dynamical variables of the chaotic systems, which are the 

states of the drive and response systems. It is said that 

identical synchronization occurs when there is a set of initial 

conditions 1 2 3( (0), (0), (0), .., (0))nx x x x  and 

        ' ' ' '
1 2 30 , 0 , 0 , 0nx x x x such that, if we denote the 

time by  t , then for t    

 

   ' 0,           1,2,3, ..,  i ix t x t for i n                         (4) 
 

That means in a good approximation the dynamics of the two 

oscillators verifies  ' ( )i ix t x t for 1,2,3,  ,i n  when large 

time enough taken in to consideration. This is called the 
synchronized state in the sense of identical synchronization.  

        Many of the fundamental concepts in chaos 

synchronization are given by Afraimovich [16]. In the 

research of Pecora and Carroll [17-19], where a 

synchronization method was established by coupling two 

identical chaotic dynamical systems through transmission of a 

driver as a subsystem which will act as a chaotic signal which 

is common between them. Hence, the method of 

synchronization by Pecora and Carroll, also used it as 

complete replacement, suggests how state of a synchronous 

chaotic systems can be used as a driver in communication. 

        Thus, for a given chaotic system, such type of 

synchronization method requires decomposition in order to 

obtain an appropriate driver subsystem. Hence, in order to 

identify driver subsystem which is stable, they are usually 

tested several combinations of a subset of state variables. It 

appears like counter intuitive that a non-dissipative system 

which can leads to the synchronization, but which is in a 

multidimensional volume preserving chaotic dynamical 

system, and in order to allows choosing a stable subsystem 

there must be at least one contractor direction so that volumes 
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in phase space are preserved. Given the possibility of the 

synchronization of chaotic systems, it is compulsory to 

determine conditions under which the synchronization of 

chaotic systems is stable. In these papers of Pecora and Carroll 

[16, 18] presented the first response to this question, beyond to 

generate the coupling mechanism, which is relatively 

straightforward but deceptively simple. 

         According to Fujisaka and Yamada [23, 24], the general 

way to introduce a bidirectional coupling between two 

identical chaotic systems by adding symmetric linear coupling 

terms to the expressions that define them. This type of 

coupling mechanism, which may be total or partial, is known 

as linear diffusive coupling. A study of Stefański [25] states 

that the properties of exponential divergence and convergence 

in  total coupling which allow to estimate the largest 

Lyapunov exponent of any of the chaotic dynamical system, 

there is a possibility which is especially advantageous in non-

smooth systems, where the Lyapunov exponents’ estimation is 

not straightforward. 

 

B. Generalized Synchronization 

           We have come to the conclusion that there are two 

central issues: First is that one should generalize the concept 

of synchronization including nonidenticity between the 

coupled chaotic systems. And the second is that one should 

design some tests to detect the nonidenticity. A lot of 

researchers have shown that this type of chaotic 

synchronization can exist [21, 22]. Mainly, this type of 

synchronization occurs when one has different coupled chaotic 

oscillators, although it has also been reported between 

identical oscillators. Given chaotic dynamical variables 

1 2 3( , , , .., )nx x x x and 1 2 3( , , , .., )ny y y y that determine the 

state of the oscillators, generalized synchronization occurs 

when there is a functional, Φ, such that, after a transitory 

evolution from appropriate initial conditions, it is 

 

1 2 3[  ( ), ( ), ( ), .., ( )]ny t y t y t y t = 1 2 3[  ( ), ( ), ( ), , ( )]nx t x t x t x t                                                                                                   

       This states that the dynamical states of one are completely  

determined by others. If both the oscillators are mutually 

coupled this functional, Φ has to be invertible, if it has driven 

and response configuration the evolution of the response is 

determined by drive, and Φ does not need to be invertible. 

When Φ is identity, identical synchronization will be the 

particular case of generalized synchronization. 

       One knows that the response system is asymptotically 

stable if there is  a  synchronization function which transforms 

each and every trajectory in the attractor of the chaotic 

transport system into a chaotic system trajectory in the 

attractor of the chaotic response system. In this case, the 

synchronized trajectories are located in a stable 

synchronization manifold. Based on the equivalence of 

generalized chaotic synchronization in the coupled chaotic 

system and asymptotic stability of the response system, 

Abarbanel [26] established a criterion for detecting 

generalized chaotic system synchronization called the 

auxiliary system approach. 

       Studies have shown that the generalized synchronization 

includes the identical synchronization as a particular or special 

case, in which the functional relationship, i.e. Φ should be 

identity function and the synchronization manifold should 

have a hyper plane. However, while the identical chaotic 

synchronization is easily seen by representing the difference 

between the coordinates of the two chaotic systems in 

coupling, to detect generalized synchronization or generalized 

chaotic synchronization does not follow a simple method, 

especially when one can analyze information obtained via 

experimentally. 

 

C. Phase  Synchronization 

      This form of synchronization, which occurs when the osci- 

-llators coupled are not identical, is partial in the sense that, in 

the synchronized state, the amplitudes of the oscillator remain 

unsynchronized, and only their phases evolve in synchrony. 

Observation of phase synchronization requires a previous 

definition of the phase of a chaotic oscillator. In many 

practical cases, it is possible to find a plane in phase space in 

which the projection of the trajectories of the oscillator 

follows a rotation around a well-defined center. If this is the 

case, the phase is defined by the angle, ( )t described by the 

segment joining the center of rotation and the projection of the 

trajectory point onto the plane. In other cases it is still possible 

to define a phase by means of techniques provided by the 

theory of signal processing, such as the Hilbert transform. In 

any case, if  1 t  and 2 ( )t denote the phases of the two 

coupled oscillators, synchronization of the phase is given by 

the relation 1 2( ) ( )n t m t   with m and n whole numbers. 

 

D. Anticipated and Lag Synchronization 

In these cases the synchronized state is characterized by time 

interval such that the dynamical variables of the oscillators, 

1 2 3( , , , .., )nx x x x and
' ' ' '
1 2 3( , , , )nx x x x are related 

by  ' ( )i ix t x t   ; this means that the dynamics of one of 

the oscillators follows, or anticipates, the dynamics of the 

other. Anticipated synchronization may occur between chaotic 

oscillators whose dynamics is described by delay differential 

equations, coupled in a drive-response configuration. In this 

case, the response anticipates the dynamics of the drive. Lag 

synchronization may occur when the strength of the coupling 

between phase-synchronized oscillators is increased. 

 

E. Amplitude envelop Synchronization 

         This is a mild form of synchronization that may appear 

between two weakly coupled chaotic oscillators. In this case, 

there is no correlation between phases or amplitudes; instead, 

the oscillations of the two systems develop a periodic 
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envelope that has the same frequency in the two systems. This 

has the same order of magnitude than the difference between 

the average frequencies of oscillation of the two chaotic 

oscillators. Often, amplitude envelope synchronization 

precedes phase synchronization in the sense that when the 

strength of the coupling between two amplitude envelope 

synchronized oscillators is increased, phase synchronization 

develops. 

 

Remark: All these forms of synchronization share the property 

of asymptotic stability. This means that once the synchronized 

state has been reached, the effect of a small perturbation that 

destroys synchronization is rapidly damped, and 

synchronization is recovered again. Mathematically, 

asymptotic stability is characterized by a positive Lyapunov 

exponent of the system composed of the two oscillators, which 

becomes negative when chaotic synchronization is achieved. 

 

IV. CONCLUSION 

       Chaotic synchronization phenomenon are quite recent in 

the nonlinear dynamical systems theory and still continue to 

raise a high interest in the scientific and engineering 

communities. Traditionally, synchronization has been based 

upon periodic signals. It has now been realized that chaotic 

signals can also be used for synchronization. In fact, they offer 

more possibilities and flexibilities. Synchronization of two or 

more dynamical system is a fundamental phenomenon for 

study in science, engineering, and technology. 
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