
 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.3, pg : 95-101 01 July 2012

95

Performance Analysis of Mobile Ad-Hoc Networks

Mr. Hradayesh Kumar Patel, Mr. Rajesh Shrivastava, Mr. Pradeep Kumar Dubey

SRIT, Jabalpur

Abstract: We propose a novel, robust MANET protocols

evaluation framework which enables researchers to track

performance metrics and evaluate theoretical predictions.

This framework speeds up the research and development

spirals, provides faster feedback to algorithm developers

and closes the loop between theory and qualitative analysis

of the protocols' performance. Our test and evaluation effort

is divided into two parts. Rapid prototyping and evaluation

of proposed algorithms is performed in the MATLAB

environment. These tools enable us to numerically analyze

performance, capabilities, convergence, and robustness of

new algorithms. The second higher fidelity approach is the

test and evaluation framework developed in OPNET

simulation environment. Its unique features are the novel

application and evaluation process including sophisticated

statistics collection and an event logging architecture.

INTRODUCTION

Currently many ad hoc network routing algorithms such as

AODV, DSR, are proposed, and plenty of researches have

been conducted on their performance analysis [2][3].

However, most of these researches only deliver simulation

results and their qualitative explanation, little has been done

with regard to theoretical analysis. The reasons for this

situation are partly due to the complexity and continuously

change of network topology and many parameters that are

highly dependent on particular scenario and difficult to

abstract.

We propose MANET protocols evaluation framework as

part of our Mobility-Aware Resource Coordination for

Optimization of Network Infrastructure (MARCONI) effort

to research, develop and evaluate a revolutionary Mobile Ad

Hoc Network (MANET) prototype. The project requires

radical rethinking of a wireless networking stack and has

already led to prototyping and evaluation of new protocols.

This collective effort spans a distributed team of researchers

working together to translate groundbreaking theoretical

research into significant performance gain over existing

state of the art MANET. In order to track our performance

metrics and evaluate theoretical predictions, we have created

an evaluation framework that speeds up the research and

development spirals, provides faster feedback to algorithm

developers and closes the loop between theory and

qualitative analysis of the protocols' performance. Our test

and evaluation effort is divided into two parts. Rapid

prototyping and evaluation of proposed algorithms is

performed in the MATLAB environment. Our tools

developed in MATLAB enable us to numerically analyze

performance, capabilities, convergence, and robustness of

new algorithms. The second higher fidelity approach is the

test and evaluation framework developed in OPNET

simulation environment. Its unique features are the novel

application and evaluation processes we developed. These

tools are independent of the type of networking stack being

tested and thus allow for a direct comparison of various

protocol iterations. The application module harness uses a

scenario document easily created and imported into the

simulation to allow for a flexible way of describing

application scenarios from the tactical user’s perspective.

The statistics collection and logging framework we

developed speed up the debugging cycle and help in

evaluating the performance and the behavior of the new

protocols.

PREVIOUS APPROACH

Network protocol development is a complex process riddled

with design and implementation challenges. Assuring

protocol correctness in all cases requires the programmer to

not only understand the complexities of different parts of a

protocol, but also gain insight into the interaction of the

protocol within the network stack [4].

Furthermore, a distributed protocol development effort,

while already challenging in its design stage, can be even

harder during implementation and debug stages. Traditional

software development methods, while successful at bringing

the networking community a number of popular protocols,

are not uniformly efficient in all possible types of

development projects [5].

Typically, once a new protocol has been developed it needs

to be simulated in a network simulation tool to evaluate its

correctness and efficiency. OPNET Modeler is the industry

standard for network modeling and 1 of 9. MOBILE AD

HOC NETWORKS (MANET) PROTOCOLS

EVALUATION FRAMEWORK simulation. It is based on a

series of hierarchical editors that directly parallel the

structure of real networks [6].

The standard method for processing performance data in

OPNET involves graphical depictions of numerous statistics

collected during the running of a simulation. Although

statistics can give us coarse information about the

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.3, pg : 95-101 01 July 2012

96

performance of a given set of protocols, they cannot say

anything about why a given protocol performed as such or

where the problems are.

One other complication is the distributed nature of attributes

defining a simulation. A scenario is described by attributes

scattered over process, node, scenario and global settings all

acting together. The application process module used in

most standard models for packet-level traffic simulation. It

is inflexible and strongly coupled with other standard

process modules that many users choose to replace.

Finally, OPNET’s basic statistics gathering architecture is

insufficient to evaluate and explain large scale behavior.

Though it offers a powerful event driven debugger, as the

number of simulated nodes rises, it becomes very hard to

keep track of events. It is difficult to store and compare

events from different runs, or to customize their format

[7,8].

Although OPNET does allow one to generate a visual plot

of various events, we found the OPNET capabilities

insufficient. The alternative analytic tool available to

programmers is a protocol behavior log implemented as a

series of console or file printouts. While useful for quick

implementation checks, this approach is not viable for

solving more complex problems due to size limitation on

most platforms. Additionally, console output is difficult to

search, and cannot be reused. Our project started out like

many other advanced network research projects. A network

simulation tool (we chose

OPNET) was an essential piece in our design. We

assembled other tools for future debugging and evaluation

that are mentioned above. However, having found the

traditional way inefficient for our goals we invested our

efforts in designing a more developed and streamlined

process for simulation, evaluation, and debugging our

protocols and algorithms. We believe that our approach has

lead to a shorter development and evaluation cycle with a

smaller team.

RAPID PROTOTYPING

The MATLAB environment provides an interface to easily

script a prototype algorithm. Using this tool we can quickly

code the approximation of algorithms derived from the

theory and evaluate how well they perform [9]. The main

purpose of this effort is to provide a numerical basis of

confidence by solving the underlying optimization problem

which guides further protocol development.

When creating the theory that underlies a network stack

design we start with the statement of NUM (Network Utility

Maximization) optimization problem which encapsulates the

network utility and constraints. Our objective is to maximize

the user perceived utility subject to the constraints on

resources. We can specify, through optimization

decomposition (OD) [10], an optimization problem for each

component throughout the network stack. These

optimization problems define coupling and information

sharing requirements between different elements of the

network. The downfall is that most of these problems are

either NP hard or need to be solved in a centralized manner:

thus our need for decentralized approximate solutions. There

are many ways (heuristics) to find a solution to these

problems; our aim is to find the one that does it the best. We

can easily test and modify existing and new algorithms until

we find one that suits our needs. This ability is very useful

and helps us find algorithms that perform quite well.

The framework we developed consists of a main loop that

steps though events. Each event can consist of position

change, flow arrival or departure, or change in QoS. For

each of these events we run an inner loop, which is on a

small time scale, to simulate the packet exchange across the

network. Throughout this inner loop we assume the node

positions and applications remain fixed. For every event

there are several modules that get executed. The first one is

responsible for the network scenario, spatial distribution of

nodes and their mobility. It also describes the types of flows

that enter the network and their destinations. These are

scriptable parameters which can be adjusted. The rest of the

modules are responsible for implementing four major

components: source rate control, routing, power control,

medium (channel) access and flow scheduling. The choice

of schemes that implement the above processes determines

the type of network stack we simulate. The flows are

simulated not as discrete packet flows but as continuous

streams. This approximation allows us to model the system

quicker and test the concepts which are the foundations of

the new algorithms. We also compare the performance of a

new algorithm such as priority based random access. We

can show numerically the potential gains we are likely to get

by implementing such an algorithm in OPNET. Because of

the low fidelity of MATLAB we will most likely see less

improvement when implemented in OPNET but it is a

reasonably good predictor.

We visualize our results as graphs of various parameters of

the network as compared to the control set of components.

We implemented a basic 802.11 scheme for each of the

variable components in our framework to gauge the

improvements derived from our theory. For every

simulation, we can run our both sets of components for the

same flow and node distribution and mobility scenario. [Fig

1]

Another important capability, not related to simulating the

network stack, is the visualization of topology, routing, and

mobility. Our MATLAB framework is able to interface with

OPNET and present routing and link visualization in a user

friendly manner. We are able to import this data from

OPNET simulation and visualize connectivity and how the

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.3, pg : 95-101 01 July 2012

97

OPNET routing protocol implementation behaves in the

context of node mobility. This capability has been very

useful in verifying our routing algorithms. [Fig 5]

Fig. 1. MATLAB Framework Simulation Results.

Here, total network utility (left column) and unicast source

rates (right column) network parameters are compared for a

simulation using our set of components (top row) vs a

control stack (bottom row). Clearly, we see improvement

over the control stack. The center graph is the routing

topology visualization at some time step. The blue dots are

nodes and each colored path marks a route for a different

flow.

OPNET SIMULATION ENVIRONMENT

The OPNET Modeler Wireless Suite provides high fidelity

modeling, simulation, and analysis of a broad range of

wireless networks. Technology developers leverage

advanced simulation capabilities and rich protocol model

suites to design and optimize proprietary wireless protocols,

such as access control and scheduling algorithms.

Simulations [11]

Key Features :

1. Fastest simulation engine among leading industry

solutions

2. Hundreds of wired/wireless protocol and vendor

device models with source code

(complete OPNET Model Library)

3. Object-oriented modeling

4. Hierarchical modeling environment

5. Scalable wireless simulations incorporating terrain,

mobility, and multiple pathloss models

6. Customizable wireless modeling

7. Discrete Event, Hybrid, and optional Analytical

simulation

8. 32-bit and 64-bit fully parallel simulation kernel

9. Grid computing support for distributed simulation

10. Optional System-in-the-Loop to interface

simulations with live systems

11. Realistic Application Modeling and Analysis

12. Open interface for integrating external object files,

libraries, and other simulators

13. Integrated, GUI-based debugging and analysis [11]

A.Logging and event data collection

Our logging infrastructure provides a powerful way for any

module in the simulation to report important events –

whether this is route table changes, traffic flow beginning or

something more fine grained. Unlike statistic collection it is

able to collect arbitrarily complex event objects. Each event

combines relevant information described by the developer:

time stamp, initiator node id, packet id, or any other atomic

piece of information relevant to the event.

From software development perspective, the logger class is

a fully standalone module which can be defined by a test

and evaluation team independent of the code to be analyzed.

The responsibility of logging events is left up to the protocol

developers who use the logger features via a single static

function throughout their code. Once created and logged

(via a static initialization function), the events can be

outputted into a variety of formats: a command window

output stream, a plain text file or an XML file format, or an

excel spreadsheet in tabular form. There is a robust

inheritance hierarchy in place which allows sub-classing of

logging events. For example, a general routing event can

have other children: route discovery initiation event, a

node’s routing table update event, routing packet receipt

event, etc. This allows complex filtering to allow the

experimenter to focus on particular types of events. This can

be done in one central location regardless of the complexity

of the rest of the system. The power of such flexible output

is apparent. Once the events are placed into spreadsheets,

they can be further filtered and sorted by time, or by any

other field. With the output of just one simulation the data

can be analyzed chronologically then per wireless node, etc.

B.Application process with xml scripting of

Scenarios

Our project relies on flexibility of simulating various traffic

flow patterns to test many specific features of the new

protocols from the perspective of the end user. For example,

‘a voice flow at 8kbps should be sent with high urgency and

quality of service demands to a group of receivers’.

In OPNET native application module, this requires

translating application behavior into traffic patterns,

changing application parameters accordingly and saving

these profiles for use by other nodes – a cumbersome

process. Modifying these patterns might be a time

consuming task even for a small behavior change. As a

http://www.ijset.com/
http://www.opnet.com/support/des_model_library/
http://www.opnet.com/solutions/network_rd/system_in_the_loop.html
http://www.opnet.com/solutions/network_rd/AppTransaction_Xpert_RASM.html

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.3, pg : 95-101 01 July 2012

98

solution, we designed a more light-weight application suite

as an OPNET module. An application dispatcher interfaces

with the protocol lower in the stack, the transport protocol

[Fig. 2], and starts child processes for applications when

necessary. We currently support the following application

types:

Fig. 2. MARCONI Application Harness.

The pictured networking stack is modeled in OPNET and

includes our own application process. The plug-an-play

interface of the application harness enables integration with

different stacks to be evaluated against each other’s

performance.

1. File Transfer: transferring files of specific size

There are no constraints on the service, and

throughput and delay are allowed to vary

arbitrarily, as long as the file takes to be delivered.

The initiator side chooses a file size to transmit and

schedules itself to transmit packets

periodically until done. The receiver simply

records them.

2. Chat: sending text bursts The chat application

transmits two-way low data rate bursty traffic. We

script the initiator task to start at a particular time

and the receiver starts responding with its own flow

of data once it receives the first packets thus

initiating a chat conversation.

3. Voice: sending VoIP This inelastic application

implements a non-trivial rate constraint and

specifies a tight delay constraint. Its operation and

traffic patterns are similar to chat, though of higher

bandwidth.

The script schema allows us to design application profiles to

mimic the behavior of each application that a tactical user

(i.e. warfighter, soldier) would be using minute by minute.

In the future, we plan to also model video streaming

applications, short command and situation awareness

messages. Together with the above application types we

already have implemented these are the applications

typically used by a warfighter [12]. For each simulated user

(node) in the network each application type loads a

corresponding (by type) application profile. This can be the

same application profile for all users or an individual one.

Our application scenario description can thus be very

general or very granular depending on the requirements of

the test cases. In addition, this approach satisfies our desire

for a single location where multiple applications could be

easily scripted and their profiles saved for distribution to

others [Fig. 3].

Fig. 3. XML Script example.

Each Application profile describes a particular application’s

sequence of tasks and their behavior as it would be observed

by the user. It can be scripted using a predefined schema to

define the behavior of the simulation as well as provide a

clear story to a human reader. Here the chat application is

defined to start a flow at 15 secs and finish it at 55 secs

while sending approximately (defined by the normal

distribution) 100 packets per second each of size about 600

bits.

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.3, pg : 95-101 01 July 2012

99

THE NEW PROCESS

The research effort is broken up into several Spirals. Each

spiral includes the evelopment of a new piece of theory, its

analysis and subsequent implementation and testing. At the

end of each spiral we release a code base which we evaluate

to isolate the performance improvements. The starting point

of each Spiral is the draft of theoretical innovations that

would be needed to improve the performance of the

MANET from the perspective of a tactical user.

The performance improvement we consider would be the

improvements in network throughput, reduced latency, and

greater reliability as perceived by the end user – the war

fighter.

Fig. 4. The ‘waterfall’ process which describes each spiral of our research
project. End user requirements drive the theory behind our protocols which

is then quickly evaluated using the MATLAB tools we developed. The

Protocols and new features result. A higher fidelity simulation completes
the process.

Another example is our MATLAB tools built specifically

for visualization of Routing topology established as a result

of the simulation run. We are able to replay the simulation

as a movie watching for the available connectivity and route

establishment as a result of this connectivity [Fig 5].

Once the bugs are fixed we are ready for the final stage of

the spiral – evaluations. Again we employ our application

module to design more complicated and more realistic

scenarios. We design the node mobility and each node’s

application behavior as it would be seen by each user. Each

of the applications define their own behavior as specific as

“send a voice message at 10 seconds to multicast IP

224.0.0.1” or “reply

to all incoming voice traffic for IP 224.0.0.2”.

Fig. 5. MATLAB Routing Topology Visualization.

Here the links between nodes are shown as thin grey lines. The thicker

color coded lines are routes at a particular time instant. The tool can be
played out as an animation or stepped through chronologically.

We then apply these application attributes to both the new

network stack we are evaluating and the baseline network

stack we chose at the beginning of the project as our starting

point. We thus run two simulations for each setup. We then

gather local (per node), and global (per network) statistics

outlined above to see what performance gains we notice as a

result of our innovations. Furthermore, specific features can

be turned on and off to pinpoint the improvement results and

tie them to specific innovations. At our discretion, we also

run a third simulation for the same setup on the networking

stack resulting from the previous spiral. This serves as

regression testing and aids our analysis of features

contributing to the performance gains.

CASE STUDY

In this section we will take a representative siege scenario

and evaluate it in MATLAB and then in OPNET. As part of

the MARCONI program objective we are required to

provide “equivalent performance at 10% of the bandwidth”

so our evaluation method has to reflect the effect of

bandwidth on performance. For each scenario we evaluate

the bandwidth is reduced until the stack can no longer

support the load, we call this the saturation bandwidth. We

apply this method to both the MARCONI stack and a

representative Control stack; the ratio is the percent of

bandwidth which we achieved equivalent performance.

When we evaluate the performance of the stacks on the

above scenario we have two metrics we are concerned with.

The elastic utility is the sum of the logs of each of the elastic

flows (in bps). For inelastic flows the utility is the sum of

the valid flow periods (or brownie points); a flow receives a

brownie point if it reaches it destination at or above 90% of

its min rate.

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.3, pg : 95-101 01 July 2012

100

Fig. 6 MATLAB simulation results, (left) inelastic utility, (right) elastic

utility.

The MATLAB results are shown in [Fig 6]. The inelastic

utility (left) for the MARCONI and Control Stacks are

plotted for each of the respective saturation bandwidths. The

elastic utility (right) shows MARCONI’s elastic utility

plotted against the fraction of the Control stacks bandwidth.

The threshold line (red) indicates the utility the Control

stack achieved at saturation. What these two plots tell us is

that MARCONI was able to carry the offered load at 2.5

Mhz where the Control needed 16 Mhz. This equates to

equivalent performance at about 16% of the bandwidth.

These are great results but have a few caveats due to the

implicit low fidelity of the MATLAB simulation tool.

Our next step, once we have verified that the proposed

algorithms perform well, is to determine the changes that

need to be made for a real world implementation. The

performance in MATLAB gives us somewhat of a best case

of how good the proposed algorithms can perform. Once we

move to OPNET modifications and approximations must be

made in order to implement them as protocols.

The OPNET results shown in [Fig 7] are very similar to

those shown in MATLAB. The MARONI and Control stack

were saturated at 4.8 Mhz and 19 Mhz, respectively. This

equates to equivalent performance at about 24% of the

bandwidth. The discrepancies between the elastic utility

plots is due to the fact that in OPNET we used a log base 10

and in MATLAB we used a natural log.

Fig. 7 OPNET simulation results, (left) inelastic utility, (right) elastic

utility.

This case study clearly shows how we use MATLAB to find

and evaluate potential protocol algorithms. These algorithms

are molded in MATLAB till they have the desired properties

to present a feasible real world implementation. This

implementation can then be coded in OPNET and eventually

move to a real radio.

FUTURE WORK

We plan to add a few more capabilities in the near future. To

begin with, we intend to implement a few other application

types: video streaming, short messaging, and situation

awareness messages. One other idea we have been nurturing

is to implement a central run-time application profile

distributor to allow batch mode execution of multiple

simulations with different (e.g.randomized) traffic profiles.

We hope to create a central modeling process that can

allocate application profiles to nodes at runtime based on a

single configuration. This process will read a master script

that describes probabilistic distributions specifying which

nodes may run which application profiles and with which

parameters. This will greatly enhance our ability to run

sensitivity and confidence tests.

CONCLUSION :

We have presented our novel, robust MANET protocols

evaluation framework which has enabled us to dramatically

speed up the research and development cycle of our effort,

improve the efficiency of the theory to protocol cycle

iteration, and otherwise increase the productivity of our

research team spanning over 6 public and private research

institutions. Our rapid prototyping framework in MATLAB

has enabled us to numerically analyze performance,

capabilities, convergence, and robustness of a new network

stack before a more thorough implementation effort is

required. Our higher fidelity simulation and evaluation

framework has enabled us to test the network stack

programmatically and with higher accuracy. We believe it

has enables us to discover the design and implementation

flaws much faster than otherwise would be possible. This

has contributed to the overall efficiency of our research

effort.

REFERENCES:

1. Vadim A. Slavin, Mike Wittie, Michael Polyakov

MOBILE AD HOC NETWORKS (MANET) PROTOCOLS
EVALUATION FRAMEWORK

2. C. E. Perkins editor, “Ad hoc networking”, Addison - Wesley,
2000

3. C. E. Perkins etc, “Performance comparison of two on-demand

routing protocols for ad hoc networks”,

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.3, pg : 95-101 01 July 2012

101

4. D. Lapsley, M. Bergamo, “An integrated approach to the

development of wireless network protocols”, in Proc. of the 1st

international Workshop on Wireless Network Testbeds,

Experimental Evaluation Characterization ,Los Angeles, CA,
USA, 2006). WiNTECH '06. ACM Press, New York, NY, 10-17

5. David Cavin, Yoav Sasson, Andre Schiper, “On the accuracy of
MANET simulators”, in Proc. of the second ACM international

workshop on Principles of mobile computing, New York,

United States 2002, pp. 38–43

6. Modeler Wireless Suite for Defense [web page]. 2006 OPNET

Technologies,
Inc. Available: http://www.opnet.com/solutions/network

_rd/modeler_wireless_defense.html

7. X. Chang, “Network simulations with OPNET”, in Proc. of the

31st Conference on Winter Simulation: Simulation---A Bridge

To the Future - Volume 1, Phoenix, Arizona, United States,
1999.

8. Varshney, M., Xu, D., Srivastava, M., and Bagrodia, R., “SenQ:

a scalable simulation and emulation environment for sensor

networks”, in Proc. of the 6th international Conference on

information Processing in Sensor Networks, Cambridge,
Massachusetts, USA, 2007.

9. Elphick, D., Leuschel, M., and Cox, S., “Partial evaluation of
MATLAB”, in Proc. of the 2nd international Conference on

Generative Programming and Component Engineering, Erfurt,

Germany, 2003.

10. L. Bui, R. Srikant, A. Stolyar, “Optimal Resource Allocation

for Multicast Flows in Multihop Wireless Network,”
 npublished.

11. http://www.opnet.com/solutions/network_rd/modeler_wireless.h

tml

12. Joe Leland, Future Army Bandwidth and Capabilities, Rand

Corporation, 2004

http://www.ijset.com/

 International Journal of Scientific Engineering and Technology (ISSN : 2277-1581)

 www.ijset.com, Volume No.1, Issue No.3, pg : 95-101 01 July 2012

102

http://www.ijset.com/

