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Abstract

The classical theory of cubic splines and the ideas of mixed
interpolation are combined for developing new quadrature
rules. A class of, what can be called as, mixed cubic splines are
derived as an extension of the classical cubic splines which can
approximate oscillatory functions f (x), by a function §A(X) of

the form §A (x) =a'cos(kx) +b'sin(kx) +c'x+d, ona
partition of subintervals of the interval [a,b]. This function has
a property that it is twice continuously differentiable at the
endpoints of the subintervals. The idea is that f(x)is
approximated by Nsuch S~A(X)' where N denotes the number of
subintervals partitioning [a,b]. A minimum norm property is

established by allowing discontinuity in S, (x) at the nodal

points. Also, quadrature rules are derived based on this
approximation and a few examples are considered for numerical
purposes.
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1. Introduction

The theory of cubic splines is deep rooted and well established.
Also the theory of mixed interpolation is well known. We can
consider spline functions to be piecewise smooth polynomial

curves, interpolating a given function f(X) at some nodal

points. Refer to Schumaker [3], Stoer [4], Sard [2] and Jones [1].
In other words, splines are locally piecewise polynomials, but are
globally smooth. They are used in modeling arbitrary functions,
and are used extensively in computer graphics.

Define
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X={x:i=0,1, --- ,n}
Y={y, =f(x)i=0,1, - n}}
1)

where
P={a=x,<x <:-<X, =b}

n

2

is a partition of the interval [a,b]. A given function f (x) can be
approximated by cubic polynomials of the form
S,(Y,x)=ax’+bx*+cx+d
3
fory e [X,,x,,]- The constants a,b,c and d are determined
using the conditions that the function is twice differentiable at the
points X, :i=0,1, --- ,nandthatS, (Y,x)=,.

The idea of approximating a given function f(x) by cubic

splines is based on the mixed interpolation approach of Meyer [5]
and Chakrabarti [6]. The generalization of the classical cubic
spline approximation by way of introducing trigonometric

functions cos(kx)and SIN(KX), along with a linear
polynomial, where K is a free parameter, is expected to take care
of the oscillatory behavior of the function. The underlying ideas

are based on the oscillatory theorems of ordinary differential
equations.

Given a partition P of subintervals of the interval [a,b]. the

mixed cubic spline is a piecewise approximation of a
function f (x), by a function of the form

S, (Y,x) = a'cos(kx) + b'sin(kx) + ¢'x +d "
4

for x E[Xj’xj+1] and K is any free parameter. That is, in each

subinterval A Z[X,— , Xj+1]’ f (x) is approximated by a function
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as given by the relation (4), along with the conditions that

SA (Y, X) is twice continuously differentiable at the nodes X; .

In section 2, the expression for the mixed cubic spline is derived.
Section 3 deals with the error analysis, by way of proving a
minimum norm-type property, similar to that of the classical case,
under certain restrictions. The uniqueness of the mixed spline is
proved in section 4. Quadrature rules based on the new
approximation are dealt with in section 5 and numerical
discussions are incorporated in section 6.

2. Mixed Splines

In this section we discuss about the derivation aspects of the
mixed spline approximation. The derivation is similar to that of
classical splines, as explained in [4].

Define the (N + 1) moments M ;as
M, = kS, (Y, xj)+S~A”(Y, X;)for x; € X,
()
where K is a free parameter. It is assumed that
SA(Y’Xj) = yj; J =01---,n
(6)

Define the mesh size of the partition hj+1 as hj+1 = Xj+1 — Xj .

The expression for the mixed splines can be derived using the
following conditions:

i) M, =§A”(Y,Xj) + kng(Y,Xj)isalinearfunction

on any subinterval A;
(ii) §A(Y,xj) =Y
(iii) §A(Y,X),§IA(Y,X),§”A(Y,X) are continuous

functions at the mesh points X i

By virtue of condition (i) and the relation (5) one can write

X=X 0 XX
h

j+1 h
forXeA. )

S, (Y, ) +Kk*S,(Y,x) = M,

j+l i

Solving the above differential equation, the following expression
is obtained:
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~ _ 1 X~ X X=X
SA(Y,X)zA].cos(kx)+Bjsm(kx)+P M. +M. :

+1
: j+1 : hj
®)
Now using the conditions
SA (Y, Xj) = yj
SA (Y’ Xj+1) = yj+l
9)

one can solve for A, B, and obtain

M. : M; :
( % —ymjsm(kxj) [kz—yj]sm(kxm)
A sin(kh,,,) sin(kh,,,)
(10)
M; M.,
[kz_yjjcos(kxj-ﬂ) [ 2 _yj+1JCOS(ka)

J’ sin(kh.,,) sin(kh;.;)
(1)

Thus, for x e [X,- , X,-ﬂ] the expression for §A (Y, X) is derived in

the form

S,(Y%) [y

Mmjsin(kx— kx;) +[ | _%jsin(kxj+1 —kx)
K ) sin(kh) U K ) sin(khy )
iy ey

i,

(12)
It is clear from the relation (12), that the mixed cubic spline

S, (Y,X)is characterized by the momentsl\/lj. Determining

these moments M ;» would determine S~A (Y, X). Thus, using the
conditions:
S A(Y,XJ-_):S A(Y,X}-—)
S A(Y,XJ-_) =S A(Y,X}r)
(13)
the following tridiagonal system of (N —1) linear equations is

obtained which has to be solved for the (N+1) unknown

moments M i which depend on K :
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(14)
where the coefficients are derived to be
1 1
A =——————~
kh, sin(kh,)
(15)
_coskhy,) coskh,) 1 1
' sin(kh,,,)  sinkh;)  kh,, kh,
(16)
1 1
"I Zkh . sin(kh_)
j+l j+1
17)

sin(kh;,;)  sin(kh;) ! sin(kh;,;) sin(kh;)
(18)

We notice that, in order to obtain a unique mixed spline, two more

conditions are required, which are discussed in the next section.

coskh,,,) coskh,) Y. Yi_
51' =£ A + ! I )2

The notion of approximating a function T (X) by the mixed cubic
splines can be further generalized by f,(x), of the
form f,(x) =a'U, (kx) + b'U, (kx) + c'x +d", which is based
on the well known "oscillatory theory" of ordinary differential
equations (ref [7] and [8]). In this case the moments M jare
defined as:

__:(Ul(kx) d? _kLTl(kx)i

UL (k%) dx* U, (kX) dx

+k2]§A(Y,x)

X=X;
(19)

where, the 'prime’ in the expression (19) denotes differentiation

with respect to the argument

and that

U (kx) =U M (kU (kx) —UM (k) U M2 (kx)
(20)
An appropriate K > 0 has to be chosen such that the relation (20)
is not zero. If U, (X) =cos(x) and U,(x) =sin(x) then the
above generalized mixed spline coincides with the trigonometric

mixed spline and as K —> Othe mixed spline tends to the
classical cubic spline provided,
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fim %20

MG,

is non-zero.

For the sake of completeness, the idea of further generalizing the
concept of mixed splines has been included. This is expected to
give accurate results for a more general class of functions, than
what has been derived and discussed in this paper. In fact, a
deeper study is yet to be done on the choice of the functions

U,(kx) and U,(kx) for any given function f(X). It is
intended to take up such studies in future, along with the

procedure for choosing K -values based on a similar kind of
minimum-norm property.

3. Minimum norm type property

This is a simple extension of the already existing minimum norm
property of the classical spline approximation.

Consider the mixed spline function §A(Y,X)which

interpolates f (X) at the nodes X, X;,-+, X, . Then the relation
~ 12 2 =~ 12
[t =S =071 -[s.]
(21)
holds good under the following conditions:

@ S, (Y,a)+k?S,(Y,a) =S, (Y,b) +k?S,(Y,b) =0-
natural splines

(b) S'a (Y,a)= S~'A(Y,b) - Hermite splines

©)
S, (Y,a)+k2S,(Y,a) =S, (Y,b) + kS, (Y,b) = O wit

h S'a(Y,a)=Sa(Y,b) andaiso f'(a) = f'(b)
(d)A k suchthatM; = -M

j+1-

It is observed that condition (d), in general, makes

S, (Y, X) discontinuous at the nodes.

We define the norm as || . ||2
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ki :ﬂsz(x)+ £ (0| dx
22)

We start with

Hf—§A

b _~ -~
=”k2f(x)+ f"(x)—kZSA(Y,x)—Sg(Y,x)‘de
a (23)
and consider

Xj+1

p= [l 00+ £00 K28,V %)~ 1Y, 30 ox

Xj

(24)
The relation (24) can be reduced to the form

Xjs1

= | (sz(x)+f"(x))zdx—xf(kzi(v,x)+§;o(,x))zdx

X X

X

2j( )—K?, (Y, %)~ §

X

510, ) kS, (Y, )+ 8. (Y, ) e

(25)

]

The last integral in the relation (25) can be re-written as

zxjf(f(x)—§A(Y,x))x(k2§A(Y,x)+S?(Y’X))dx
+Xr(f "(x) = 8007 30 Jx (€8, 07,0+ 8, (Y, x)

(26)

Integrating the second integral appearing in the relation (26) by
parts and summing up over j=0,1,---,n—1 and using any of

the conditions (a) to (c), as listed above, one can show that the
value of the integral reduces to zero. Thus, we arrive at the
relation
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X1 Xji1

I (k2f 0+ £ 00f dx— [ (K25, (Y, %) + 5. (Y, %)) dx

i Xj

x

Xji1

—2k2 (£ (0 -5, (v, 0)x (K25, (Y, %) +5.(¥, %) Jx

Xj

(27)

Summing up over j =0,1,---,n—21we finally arrive at

[t =S, =11 -5, [ - 2kzixr(f ()= 5, (V. %) Jx (k8
J

=l Xj

(28)

In any subinterval A =[x, x, , ], if we assume that the linear

function k28~A (Y, x)+ S~A (Y, X) do not change sign, then by the
weighted mean value theorem of integral calculus, we get

XJI

ZkZ( V) (K28, 0,0+, )i

X

~ 2 2
S| =[-8

(29)
for some 77; € [X;, X;,,].

It can be verified on integrating by parts, that

X

oy at+tM;
j(k S (Y, %)+ S, (Y, x) Jix= ”k ih,,
(30)
Now suppose we choose a K such that
M, =-M;for j=0L---,n—
@31

we arrive at the relation (21). It is then noted that in each
subinterval A a different kj is used and this makes

SI (Y, x) discontinuous at the nodes.
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4. Uniqueness property
Using the
k2S,(Y,a)+S, (Y,a) =k2S,(Y,b) +S, (Y,b) =0 we

can determine the moments M 'chompIeter and hence we can

conditions

approximate T (X) by S~A (Y, X) uniquely, if the determinant of

the tridiagonal matrix appearing in the relation (14) is non-
singular.

We suppose that the relation (21) holds good. If S~A (Y,X) and

§A(Y,X) are two mixed splines approximating T (X),along
with the conditions that

SA (Y. x;) = (X))
S. (Y. %)) = f(x;)
k2§ (Y,a)+ S, (Y, a)=0$
k5, (Y, b) + S(Y,b) = O
kS, (Y, a)+S (Y,a) =0
k2S,(Y,b) + S, (Y,b) =0

(33)
then we arrive at
[t =S, =1t =[]
(34)

and also

=~ 2 =
Hf_SA =||f||2_sA

(35)

Replacing f (X) by §A (Y, X) inthe relation (34), we obtain

~ 2
-fs. 1

(36)
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Interchanging gA (Y,x) and S~A (Y, X) in the relation (36), we
arrive at

= ~ ~ 2
H S,-S,| = -[s. ]
@37)
Adding the two relations (36) and (37), we get
~ - 2
S,-S, | =0
(38)

If a constant K exists such that condition (32) is satisfied as well
as S~A (Y,x) and §A (Y, x) are continuous, by the definition of

|| . ||2 , we obtain that

(8007081070 )+ k(8,010 - 8,01, =0
(39)

Using the conditions (33), we can then conclude that

S.(Y,X)=5,(Y,%)

(40)
This proves the uniqueness.

The generality involved in the tridiagonal system of equations
(14), makes the direct verification of the fact that as the

parameter K — O , the mixed spline function tends to the classical
cubic spline formula: S, (Y, Xx) > S, (Y, X). But the result is
verified for N =2andn = 3.

5. Development of quadrature rules

By direct integration of S, (Y, X)on the respective subintervals
we can derive various quadrature formulae. Thus we derive the

following expressions after integration of S, (Y, X)over the

interval [X;,X;,]:
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_ e ML M
lj= JSA(Y'X)dX’[yi @ T ][ksin(e)]+2k2(Mi+Mj‘1)

(41)
where @ = Kh. Summing over j=1,2,---,nwe arrive at
X

Zn: J§A(Y,x)dx:zn:lj
=i =i

1=l %,

(42) which is an

b
approximation for | =.[ f (X)dx. It is also verified that as
a

k — 0, the new quadrature formulae tend to the corresponding
classical results.

6. Numerical study
We have considered an equidistant set of points

0,h,2h,---,nh, where h =

——. We have worked with the
n

values ofn=12,14,16, 18, 20, 22, 24, 26, 28, 30.Various

test functions are chosen for numerical study. A few functions are

tested for the validity of the approximation and a few others for

testing the accuracy of the quadrature formulae. In both cases, it

can be inferred that the mixed spline approximation or its

quadrature rule, is better. We have chosen K values arbitrarily.

Table 1, Table 2 and Table 3 compare the absolute errors in the
quadrature formulae based on the classical and mixed spline.
Figures 1, 2 and 3 compare the accuracy in approximation of test
functions using classical cubic spline and mixed cubic spline. The
minimum norm property is verified for two simple functions,
satisfying the requirements as discussed in section 4, and the
changes are remarkable. Figures 5 and 7 verify the minimum
norm property. This can be compared with Figures 4 and 6,

wherein K is chosen arbitrarily.

Forn=2h= % ,0 =kh and x €[0, h] the approximation is
given to be
[JSET@2012
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S~A(Y,X)=(f(0)—WjM+(f(h)—l\k@jm+é(EMl+TMoj

(43)

and for X € [h,2h] we obtain

+12(X_th+2h_XMlj
k\ h h
(44)

Similarly, for n=3,h = %, and X € [0, h]we obtain

50|10~ [0 - L g

for X €[h,2h] we can derive

+1(X_hM2 +2h_XM1j
k? h h
(46)

and for X € [2h,3h] we get
= ~ M, }sin(36 - k) M, }sin(kx-26)
SA(Y’X)_[f(Zh) kzj sin(o) +[f(3h) k?) sin(0)

-I-klz[x_hZhMB-l-th_Xsz

(47)

It is verified that the expressions (43)-(47) tend to the
corresponding classical cubic spline interpolation functions, as the

parameter K — 0.

Table 1 [xe* sin(5x)dx =13.6234,k =5
0
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n | Classical Spline | Mixed Spline 26 | 0.0110667 0.000204782

12 | 3.66529 0.205979 28 | 0.00965006 0.0000781875

14 | 2.76146 0.089989 30 | 0.00848596 0.0000056522

16 | 2.14911 0.0367852

18 | 1.7177 0.0105582 {e‘X cos(10.X), 0, 7. 14, 14, 10}

20 | 1.40328 0.00290153

Table 2 j cos@x)sin(5x)dx =1.111111k =3
0

f(x)
Classical
—  Mixed §

n | Classical Spline | Mixed Spline
Figure 1. Comparison between classical cubic spline and

121 0.104116 0.00930373 mixed spline. Interval [0, 7], Number of subintervals
14 | 0.0812809 0.00234235 =14,k =10
16 | 0.0636427 0.000516667 {56 ), 0., 4, 94,400}
18 | 0.0507395 0.000008359 Y

04
20 | 0.0412523 0.000125106 ol
T 3 P

2.5 30
Table 3 [ 21 g~ 0124439k — 4.8

o 1+ 25X

n | Classical Spline | Mixed Spline

20 | 0.0177886 0.00114583 . : . o
Figure 2: Comparison between classical cubic spline and

22 | 0.0150026 0.000688031 mixed spline. Interval [0, 7], Number of subintervals
=14,k =4.9

24 1 0.0128142 0.000395943
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{X3 sin(4 X). 0, , 14, 14, 4}

b
T

Volume No.1, Issue No.5, pg : 260-268

Figure 3: Comparison between classical cubic spline and mixed
spline. Interval [0, 7], Number of subintervals =14,k =4

{X cos(X), 0, 1,2, 1}

05F ,/'/

{X cos(X). 0, 1, 2}

Figure 4: X €[01],n=2,k =1
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Figure 5: X €[0,1],n = 2,k satisfies minimum norm

1
{cos(X) 2002

|
N’

1.0

{cos(X)+2.0,1, 2}

Figure6:x €[0,1],n=2,k =%

Figure 7: X €[0,1],n = 2,k satisfies minimum norm

7 Conclusions

The classical cubic splines have been generalized based
on the idea of mixed interpolation, which can be further extended
to higher order splines. The mixed splines have been derived by
introducing trigonometric functions along with a linear function.
A minimum norm type property for the mixed splines has been
established at the cost of a discontinuity of the second derivative
of the mixed spline at the nodal values. The uniqueness of the
mixed spline approximation has been proved at the same cost.
Also, quadrature rules have been derived by integrating the mixed
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spline approximation. A few examples have been considered for
the purpose of comparison. It has been verified that the
approximation formula, as well as the quadrature rule based on
mixed spline, tend to the corresponding classical formulae in the

limitask — 0.
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